Maize YABBY Genes drooping leaf1 and drooping leaf2 Regulate Plant Architecture.

نویسندگان

  • Josh Strable
  • Jason G Wallace
  • Erica Unger-Wallace
  • Sarah Briggs
  • Peter J Bradbury
  • Edward S Buckler
  • Erik Vollbrecht
چکیده

Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.

In this article, we report that carpel specification in the Oryza sativa (rice) flower is regulated by the floral homeotic gene DROOPING LEAF (DL) that is distinct from the well-known ABC genes. Severe loss-of-function mutations of DL cause complete homeotic transformation of carpels into stamens. Molecular cloning reveals that DL is a member of the YABBY gene family and is closely related to t...

متن کامل

Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.

AGAMOUS-LIKE6 (AGL6) genes play essential roles in flower development, but whether and how they work with floral organ identity genes remain less understood. Here, we describe interactions of the rice (Oryza sativa) AGL6 gene MADS6 with other rice floral homeotic genes in flower development. Genetic analyses revealed that MADS6 specifies the identity of the three inner whorls and floral meriste...

متن کامل

Genome-wide expression profiling and identification of genes under the control of the DROOPING LEAF gene during midrib development in rice.

The DROOPING LEAF (DL) gene has an important function in rice development. Loss-of-function mutation of DL fails to form midrib, a strong structure formed in the central region of the leaf, resulting in a drooping leaf phenotype. In addition, severe mutation in DL causes a floral homeotic change, i.e., replacement of the carpels by the stamens. Thus, DL regulates midrib formation in the leaf an...

متن کامل

Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat.

Floral organ formation has been the subject of intensive study for over 20 years, particularly in the model dicot species Arabidopsis thaliana. These studies have led to the establishment of a general model for the development of floral organs in higher plants, the so-called ABCDE model, in which floral whorl-specific combinations of class A, B, C, D, or E genes specify floral organ identity. I...

متن کامل

Generation of artificial drooping leaf mutants by CRISPR-Cas9 technology in rice.

CRISPR-Cas9 technology, which uses an RNA-guided nuclease, has been developed as an efficient and versatile genome-editing method to induce mutations in genes of interest. To examine the feasibility of this method in developmental studies of a model monocot, rice (Oryza sativa), we introduced the construct gDL-1, which produced a guide RNA targeting the DROOPING LEAF (DL) gene. DL regulates mid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2017